LLM Personal Productivity Platform - Design Specification
1. Project Overview
1.1 Purpose
A personal productivity platform that combines LLM chat capabilities with visual workflow design, enabling users to create, manage, and execute AI-powered automation workflows for personal tasks.
1.2 Core Features
- LLM Chat Interface: Direct conversation with AI models
- Workflow Designer: Visual drag-and-drop workflow builder
- Task Automation: Execute workflows automatically or on-demand
- Personal Dashboard: Overview of workflows, chat history, and productivity metrics
1.3 Target User
Individual users seeking to enhance personal productivity through AI automation and assistance.
2. Technical Architecture
2.1 Frontend Stack
- Framework: React 18+ with TypeScript
- UI Library: Tailwind CSS + Headless UI
- State Management: Zustand (lightweight, perfect for personal apps)
- Routing: React Router v6
- HTTP Client: Axios
- Workflow Visualization: React Flow
- Icons: Lucide React
- Forms: React Hook Form + Zod validation
2.2 Backend Stack
- Framework: FastAPI (Python)
- Database: PostgreSQL with SQLAlchemy ORM
- Authentication: JWT tokens
- LLM Integration: OpenAI Python SDK
- Task Queue: Celery with Redis
- API Documentation: Automatic with FastAPI
- Environment: Pydantic for settings management
2.3 System Architecture
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ React Frontend │ │ FastAPI Backend │ │ OpenAI API │
│ │◄──►│ │◄──►│ │
│ - Chat UI │ │ - API Endpoints │ │ - GPT Models │
│ - Workflow UI │ │ - Workflow Exec │ │ - Embeddings │
│ - Dashboard │ │ - Auth │ │ │
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ PostgreSQL │
│ │
│ - Users │
│ - Workflows │
│ - Chat History │
│ - Executions │
└─────────────────┘
3. Core Components
3.1 Chat Interface
Purpose: Direct interaction with LLM models
Features:
- Real-time chat with OpenAI GPT models
- Message history persistence
- Conversation threads/sessions
- Message export capabilities
- Prompt templates library
Components:
ChatContainer: Main chat interfaceMessageList: Chat message displayMessageInput: Text input with send functionalityConversationSidebar: Chat history navigationPromptTemplates: Reusable prompt library
3.2 Workflow Designer
Purpose: Visual workflow creation and management
Features:
- Drag-and-drop node-based editor
- Pre-built workflow templates
- Custom node types (LLM, API, Logic, etc.)
- Workflow validation and testing
- Version control for workflows
Node Types:
- LLM Node: Send prompts to OpenAI
- Input Node: Accept user input
- Output Node: Display results
- Logic Node: Conditional branching
- API Node: External API calls
- Timer Node: Scheduled execution
- File Node: File operations
Components:
WorkflowCanvas: React Flow workspaceNodePalette: Available node typesNodeEditor: Configure selected nodesWorkflowControls: Save, run, test actionsWorkflowList: Manage saved workflows
3.3 Dashboard
Purpose: Overview and management interface
Features:
- Workflow execution status
- Chat statistics and analytics
- Quick actions panel
- Recent activity feed
- Personal productivity metrics
Components:
DashboardGrid: Layout containerStatsCards: Key metrics displayRecentActivity: Activity timelineQuickActions: Common workflow triggersWorkflowStatus: Execution monitoring
4. Data Models
4.1 User Model
class User:
id: UUID
email: str
name: str
created_at: datetime
updated_at: datetime
openai_api_key: str (encrypted)
4.2 Workflow Model
class Workflow:
id: UUID
user_id: UUID
name: str
description: str
nodes: List[WorkflowNode]
edges: List[WorkflowEdge]
is_active: bool
created_at: datetime
updated_at: datetime
4.3 Chat Model
class ChatSession:
id: UUID
user_id: UUID
title: str
created_at: datetime
updated_at: datetime
class ChatMessage:
id: UUID
session_id: UUID
role: str # 'user' | 'assistant'
content: str
timestamp: datetime
4.4 Workflow Execution Model
class WorkflowExecution:
id: UUID
workflow_id: UUID
status: str # 'pending' | 'running' | 'completed' | 'failed'
input_data: dict
output_data: dict
error_message: str
started_at: datetime
completed_at: datetime
5. API Endpoints
5.1 Authentication
POST /auth/login- User loginPOST /auth/register- User registrationPOST /auth/refresh- Refresh tokenPOST /auth/logout- User logout
5.2 Chat API
GET /chat/sessions- List chat sessionsPOST /chat/sessions- Create new sessionGET /chat/sessions/{id}/messages- Get messagesPOST /chat/sessions/{id}/messages- Send messageDELETE /chat/sessions/{id}- Delete session
5.3 Workflow API
GET /workflows- List user workflowsPOST /workflows- Create workflowGET /workflows/{id}- Get workflow detailsPUT /workflows/{id}- Update workflowDELETE /workflows/{id}- Delete workflowPOST /workflows/{id}/execute- Execute workflowGET /workflows/{id}/executions- Get execution history
5.4 Dashboard API
GET /dashboard/stats- Get user statisticsGET /dashboard/recent- Recent activityGET /dashboard/executions- Recent executions
6. User Interface Design
6.1 Layout Structure
┌─────────────────────────────────────────────────────────────┐
│ Header (Navigation) │
├─────────────────────────────────────────────────────────────┤
│ │ │
│ Sidebar │ Main Content Area │
│ │ │
│ - Chat │ ┌─────────────────────────────────────────┐ │
│ - Flows │ │ │ │
│ - Dash │ │ Dynamic Content │ │
│ │ │ (Chat/Workflow/Dashboard) │ │
│ │ │ │ │
│ │ └─────────────────────────────────────────┘ │
└─────────────────────────────────────────────────────────────┘
6.2 Color Scheme
- Primary: Blue (#3B82F6) - Actions, links
- Secondary: Gray (#6B7280) - Text, borders
- Success: Green (#10B981) - Completed states
- Warning: Amber (#F59E0B) - Pending states
- Error: Red (#EF4444) - Error states
- Background: White/Gray-50 - Main areas
6.3 Typography
- Headers: Inter font, various weights
- Body: Inter font, regular weight
- Code: JetBrains Mono, monospace
7. Security Considerations
7.1 Authentication & Authorization
- JWT-based authentication
- API key encryption at rest
- Role-based access (future expansion)
- Session timeout management
7.2 Data Protection
- Encrypt sensitive data (API keys)
- Secure HTTP-only cookies
- Input validation and sanitization
- Rate limiting on API endpoints
7.3 API Security
- CORS configuration
- Request size limits
- API key rotation support
- Audit logging
8. Development Phases
Phase 1: Core Infrastructure (Weeks 1-2)
- Set up React + TypeScript project
- FastAPI backend with basic auth
- Database setup and models
- Basic chat interface
Phase 2: Chat Functionality (Weeks 3-4)
- Complete chat interface
- OpenAI integration
- Message persistence
- Conversation management
Phase 3: Workflow Designer (Weeks 5-7)
- React Flow integration
- Basic node types
- Workflow persistence
- Simple execution engine
Phase 4: Dashboard & Polish (Weeks 8-9)
- Dashboard implementation
- UI/UX improvements
- Testing and bug fixes
- Documentation
Phase 5: Advanced Features (Weeks 10+)
- Advanced node types
- Workflow scheduling
- Analytics and reporting
- Performance optimization
9. File Structure
9.1 Frontend Structure
src/
├── components/
│ ├── chat/
│ ├── workflow/
│ ├── dashboard/
│ └── ui/
├── hooks/
├── stores/
├── types/
├── utils/
├── pages/
└── api/
9.2 Backend Structure
app/
├── api/
│ ├── auth/
│ ├── chat/
│ ├── workflow/
│ └── dashboard/
├── models/
├── services/
├── utils/
├── core/
└── tests/
10. Next Steps
- Environment Setup: Configure development environment
- Repository Setup: Initialize Git repository with proper structure
- Basic Authentication: Implement user registration/login
- MVP Chat: Build basic chat interface with OpenAI integration
- Workflow Foundation: Create basic workflow designer
- Iterative Development: Add features incrementally based on usage
11. Success Metrics
- User Engagement: Daily active usage of chat interface
- Workflow Adoption: Number of workflows created and executed
- Task Completion: Successful workflow executions
- User Satisfaction: Feedback and feature requests
- Performance: Response times and system reliability
This specification provides a comprehensive foundation for building your LLM personal productivity platform. Each section can be expanded based on specific requirements and user feedback during development.